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Abstract

Testing for differences between two states is a staple of climate research, for

example, applying a Student's t test to test for the differences in means. A more

general approach is to test for differences in the entire distributions. Increas-

ingly, this latter approach is being used in the context of climate change

research where some societal impacts may be more sensitive to changes fur-

ther from the centre of the distribution. The Kolmogorov–Smirnov (KS) test,

probably the most widely-used method in distributional testing, along with the

closely related, but lesser known Kuiper's (KU) test are examined here. These,

like most common statistical tests, assume that the data to which they are

applied consist of independent observations. Unfortunately, commonly used

data such as daily time series of temperature typically violate this assumption

due to day-to-day autocorrelation. This work explores the consequences of this.

Three variants of the KS and KU tests are explored: the traditional approach

ignoring autocorrelation, use of an ‘effective sample size’ based on the lag-1

autocorrelation, and Monte Carlo simulations employing a first order auto-

regressive model appropriate to a variety of data commonly used in climate sci-

ence. Results indicate that large errors in inferences are possible when the

temporal coherence is ignored. The guidance and materials provided here can

be used to anticipate the magnitude of the errors. Bias caused by the errors can

be mitigated via easy to use ‘look-up’ tables or more broadly through applica-

tion of polynomial coefficients fit to the simulation results.
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1 | INTRODUCTION

In climate science, one of the most fundamental pursuits
is determination of the significance of differences

between two states or sets of conditions. For example, the
two states may be characterized by opposite phases of
the North Atlantic Oscillation (NAO), by dry versus wet
phases of the Asian Monsoon, or by historical and future
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climate states as simulated by a Global Climate Model
(GCM). Typically, a statistical test is applied to a limited
sample of data derived from each of the two states. The
Student's t test is perhaps the most commonly applied
test and can be used to infer differences between the
means of the two states. Although quite useful, some-
times an analyst wants information regarding higher
order differences beyond the means. For example, in a
climate change context an increase in the upper tail of
a temperature or precipitation distribution may be more
impactful for some applications than a change in the
mean. Thus, in some situations there is a desire to test for
a general difference in distributions.

The Kolmogorov–Smirnov (KS) test has been used
widely to perform such distributional testing. The KS test
operates by quantifying the distance between the empiri-
cal distribution functions derived from two different sam-
ples of data. Since it is nonparametric it makes no
assumptions regarding the underlying distributions from
which the samples are drawn. However, like most com-
monly used statistical tests, there is an underlying
assumption that the values within each sample are statis-
tically independent. Violation of this assumption typi-
cally leads to an excessive rate of rejections of the null
hypothesis that there is no difference. Because most com-
mon physical variables of interest to a climate scientist
exhibit non-trivial correlation spatially (i.e., between
nearby gridpoints or stations) and temporally (i.e., from
one observation in time to the next) vigilance in hypothe-
sis testing is warranted. It should be noted that although
this work deals only with the effects of temporal coher-
ence, once local (e.g., gridpoint or station) significance
has been established by appropriate means, recent
advances allow for addressing the problem of spatial
coherence in a straightforward manner (Wilks, 2016).

With regard to addressing serial correlation in signifi-
cance testing, it appears that Laurmann and Gates (1977)
introduced to the atmospheric sciences community the
notion of an ‘effective sample size’, neff, in relation to
the actual sample size, n. They proposed that an estimate
of neff, based on the lag-1 autocorrelation in the data,
could be used to adjust an estimate of the variance in test-
ing the difference in means between two samples, thereby
accounting for serial correlation. Thereafter, Thiebaux
and Zwiers (1984) demonstrated that the concept of an
‘effective sample size’ is nebulous with no unique way to
estimate it and cautioned against its use in the general
application of statistical tests. Later work by Zwiers and
von Storch (1995) explored various ways in which serial
correlation could be taken into account in testing for the
difference between the means of two samples.

In spite of the complexities and cautions raised, substitu-
tion of neff for n in various statistical tests to account for

autocorrelation in time series has proliferated. In particular,
the simplified expression for neff based on the assumption of
a first-order autoregressive process (Laurmann and
Gates, 1977) has become the de facto means for dealing with
serial correlation in significance testing. Surprisingly how-
ever, accounting for serial correlation in application of the
KS test is often lacking. While several studies have examined
this issue (Weiss, 1978; Durilleul and Legendre, 1992;
Xu, 2013) they have not resulted in a general approach that
can be readily implemented. The purpose of this work is to
fill that void.

This work examines three competing strategies in
application of the KS test, and the closely related Kuiper's
(KU) test, both of which are detailed below:

• the traditional approach of ignoring serial correlation
• substitution of an effective sample size, neff, for n
• use of Monte Carlo simulations to account for serial

correlation.

The third approach, which is the main focus, is analo-
gous to that of Zwiers and von Storch (1995) who pro-
vided revised critical values for use in application of the
Student's t test based on the lag-1 autocorrelation. As a
shorthand, subscripts ‘t’ for traditional, ‘e’ for effective,
and ‘s’ for simulation (using a polynomial fit to smooth
the results) are affixed to KS, KU, or simply K when refer-
ring to both tests generically.

In what follows, before delving into the details of the
methodology, Section 2 presents examples based on both
actual observations as well as realistic synthetic data in
order to motivate this work. The details of the methodol-
ogy for the three approaches are given in Section 3 along
with thorough instructions for implementation. Section 4
explores some of the properties of the simulation
approach in comparison with the other two approaches.
Finally, Section 5 concludes with a summary and outlines
several different ways in which the results from this
study can be applied in practice. Supplementary material
contains the coefficients and translation tables that can
be used to implement the Ks distributional testing
procedures.

2 | MOTIVATIONAL EXAMPLES

Before delving into the details of the various methodolo-
gies some examples, based on both real-world observa-
tions as well as synthetic data, are presented to motivate
this work. Daily maximum (Tmax) and minimum (Tmin)
surface air temperature from Central Park in New York
City, New York were obtained from the National Centers
for Environmental Information (NCEI) (https://www.
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ncdc.noaa.gov/cdo-web/datatools/findstation) spanning
the time period 1869 to 2019. These data are from the
daily Global Historical Climatology Network (GHCN-
Daily) dataset prepared by Menne et al. (2012).

Figure 1 displays the time series of monthly averaged
Central Park Tmax and Tmin. Although both series exhibit
distinct warming trends, the smoothed curves highlight
the considerable interdecadal variability. This low-
frequency variability provides a convenient testbed for
application of the KS and KU tests. A series of tests are
applied to adjacent 20-year periods, separately for Tmax

and Tmin, for January and July, and for daily values and
monthly means. The first set consists of testing 1870–
1889 versus 1890–1909. Shifting the starting points of the
sets by 5 years per set produces a total of 23 sets terminat-
ing with 1980–1999 versus 2000–2019.

An example of the test results is show in Figure 2 for
the KS test applied to Central Park July daily Tmin with
probabilities given for three variants of the tests (KSt,
KSe, KSs) for each of the 23 sets. Note that the probabili-
ties here, and throughout the rest of this paper, are
expressed as the cumulative probability, from minus
infinity to the point in question. For example, a probabil-
ity of .95 is equivalent to a one-tailed significance level of
.05, typically interpreted as reason to reject the null
hypothesis that the two samples are drawn from the same
distribution. The K tests are one-tailed because a

probability in the lower tail is indicative of a very close
agreement between the two distributions, hence irrele-
vant to rejection of the null hypothesis of no difference.

The results in Figure 2 show a consistent pattern in
which Kt (Ke) indicates the most (least) significant results
with Ks in between, however the separation between the
three tests varies considerably. That Kt is consistently
the most significant is expected because any degree of
autocorrelation, which should be considerable for daily
data, reduces the amount of independent information
available. Since Kt neglects this it is overly confident.
However, these examples do not explicitly display the
amount of dependence due to serial correlation.

In order to provide a perspective from which to inter-
pret these results in a more controlled environment, syn-
thetic daily data have been generated. Four sets of data
consisting of 10,000 months each are derived from a first-
order autoregressive process (AR1) with lag-1 autocorre-
lations of 0.0, 0.3, 0.6, and 0.9. While the details of the
data generation are given below, the relevant point to
note here is that since these data were generated in the
same fashion as the data used in the Monte Carlo simula-
tions to derive Ks, by construction results for KSs and KUs

represent the ‘truth’.
In evaluating Kt and Ke in the virtual world of synthetic

data the customary probability of .95, corresponding to a
significance level of .05, is adopted as an example. Thus, a
Kt or Ke probability exceeding .95 defines a significant
result. If the corresponding Ks probability falls below .95
this is denoted as a false positive (FP). Similarly, when Ks is
significant but Kt or Ke are not, this represents a false
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FIGURE 1 Monthly averaged maximum (Tmax, red) and

minimum (Tmin, blue) temperature for Central Park, New York

from 1869 to 2019 with 7-point running median (bold curve) and

linear trend (bold line)
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FIGURE 2 Probabilities (1 minus one-tailed significance) from

KS test applied to Central Park July daily minimum temperature.

Results are shown for three variants of the KS test: traditional

(black), simulation (cyan) and use of neff (red). There are 23 epoch

sets consisting of adjacent, non-overlapping 20-year periods such

that each set is offset by 5 years. For example, set 1 tests 1870–1889
vs. 1890–1909, set 2 tests 1875–1894 vs. 1895–1914, and set 23 tests

1980–1999 vs. 2000–2019
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negative (FN). Because of the predictable nature of the
biases of Kt and Ke as seen in Figure 2, virtually all errors
for Kt (Ke) are of the FP (FN) type; round off error for very
close results leads to the rare exceptions.

Figure 3 displays the FP rates for Kt (black) and FN
rates for Ke (red) as solid (KS) and dashed (KU) lines. For
small values of serial correlation the FP and FN rates are
modest. However, as the serial correlation increases the
FP rate for Kt increases nonlinearly, reaching error rates
~30 to 50% for values of the lag-1 autocorrelation that
may not be uncommon in many physical variables of
interest, such as daily temperature. The Ke approach per-
forms much better, especially for greater serial correla-
tion but still has error rates ~5 to 10%. For comparison
the values averaged over all of the Central Park cases are
plotted as symbols. For monthly data, which typically
have negligible correlation from year to year, the error
rates are near zero. However, much larger error rates
~25% (15%) are seen for Kt (Ke). Note that choosing a
fixed value (.95) to denote significance yields a simple,
but narrow framework in which to compare the three
approaches. Below the differences between the three tests
are explored more fully and it is shown that the much
higher error rate for Kt compared to Ke seen here is not
universal—in other circumstances the roles may be
reversed.

3 | DISTRIBUTIONAL TESTING
METHODOLOGY

3.1 | Introduction

Distributional testing involves the comparison of empiri-
cal Cumulative Distribution Functions (CDFs) derived
from two separate samples and can be divided into two
classes: supremum and quadratic (Stephens, 1986). The
former are based on the maximum difference between
the two CDFs while the latter are based on the squared
differences between the two CDFs. The most widely
used is the KS test which utilizes the supremum
approach. Note that the two-sample KS test is sometimes
referred to as the Smirnov test (Wilks, 2006). Closely
related to it is the lesser-known KU test. Two popular
quadratic tests are the Cramer von Mises (CM) and
Anderson-Darling (AD). While the KS test is more sensi-
tive to differences near the middle to the distributions,
with the CM often yielding similar results, the KU test is
equally sensitive across the distribution while the AD
test is more sensitive in the tails (Stephens, 1970, 1986).
The AD test suffers from the fact that critical values are
not as readily available since they depend on sample size
(Pettitt, 1976).

This work focuses on the KS test because of its wide-
spread use and also the KU test because it is so closely
related to the KS test and is complementary with regards
to its sensitivity. Details for the implementation of each
of these tests are given below in three ways: the tradi-
tional approach, use of an effective sample size, and
results derived from Monte Carlo simulations.

It is important to note that all of the results herein
pertain to tests applied to two distinct samples. In some
contexts it is desirable to compare the CDF from a sam-
ple with the CDF from a parametric fit to the same
sample. Unfortunately, this violates the basic assumption
that the two CDFs are derived from independent samples
of data. In such instances, another approach, such as the
Lilliefors test (Lilliefors, 1967) or Monte Carlo simulation
are required.

3.2 | The traditional approach (Kt)

The first step in performing the K tests involves creating
empirical CDFs, F1(x) and F2(x), from the two samples of
data (Press et al., 1992) and defining:

D+ =max F2 xð Þ−F1 xð Þ½ � ð1Þ

D− =max F1 xð Þ−F2 xð Þ½ � ð2Þ
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FIGURE 3 Average false positive (FP, Kt, black) and false

negative (FN, Ke, red) rates for KS (solid) and KU (dashed) tests as

a function of lag-1 autocorrelation as applied to 10,000 years of

synthetic AR1 data having lag-1 autocorrelations of 0.0, 0.3, 0.6 and

0.9. Filled circles (open squares) represent averages for KS

(KU) tests, as exemplified in Figure 2, applied to Central Park

January and July maximum and minimum temperatures with left-

most (right-most) cluster of symbols for monthly (daily) data. FP

(FN) is the rate at which the traditional (neff) test attains (fails to

attain) significance at the 5% level when the simulation test does

not (does)
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For the KS test define:

D=max jD+ j, jD− jð Þ ð3Þ

and for the KU test define:

V = jD+ j + jD− j ð4Þ

In summary, the KS test is based on the maximum
distance between the two CDFs while the KU test is
based on the sum of the largest distance above and larg-
est distance below.

Next, if n1 and n2 are the two sample sizes compute:

N= n1 n2ð Þ= n1+n2ð Þ½ �1=2 ð5Þ

Finally, define the KS (λKS) and KU (λKU) test
statistics:

λKS= N+0:12+ 0:11=Nð Þ½ �D ð6Þ

λKU= N+0:155+ 0:24=Nð Þ½ �V ð7Þ

While the significance levels corresponding to the λK
test statistics are available from software packages, they
can be estimated via summation series. First, define the
significance level (α):

α=1 – p ð8Þ

where p is the probability summed to the upper tail
(i.e., the CDF value).

For the KS test:

αKS=2 Σ
∞

j=1
ð−1j−1exp −2 j2λKS

2
� � ð9Þ

and for the KU test:

αKU=2 Σ
∞

j=1
4j2λKU

2−1
� �

exp −2 j2λKU
2

� � ð10Þ

Although these are infinite series they generally con-
verge rapidly and no more than 100 terms are necessary
(Press et al., 1992). The summations can be terminated
when either of two conditions are met:

• when the absolute value of the current term in the
summation is ≤10−3 times the absolute value of the
previous term or

• when the absolute value of the term is ≤10−8 times the
current sum.

3.3 | Use of an effective sample size (Ke)

The approach introduced here based on an effective sam-
ple size is a simple extension of the traditional approach
employing an assumption used widely in climate science.
Following Laurmann and Gates (1977), if one assumes
an AR1 process an effective sample size (neff) can be
defined in terms of the actual sample size (n) and the
lag-1 autocorrelation (r):

neff = 1−rð Þ= 1+rð Þ½ �n ð11Þ

Note that when r < 0 here we set neff = n. This is a
conservative approach which prevents neff from exceed-
ing n. Some may prefer a less conservative approach in
which neff is allowed to exceed n, reflecting the reduced
sampling variability that would be encountered. Once
effective sample sizes have been estimated they can be
substituted for n1 and n2 in (5), proceeding with the tradi-
tional approach as outlined above.

3.4 | Monte Carlo simulation and
polynomial approximation (Ks)

The simulation procedure employed here is based on one
critical assumption, namely that the data to be tested fol-
low that of an AR1 process:

Xt=r Xt−1+et ð12Þ

where Xt is the value at time t, r is the lag-1 autocorrela-
tion, and et is a zero mean Gaussian random variable
with constant variance. Note that while (12) represents a
zero-mean process, this does not limit the generality of
the results. Strictly speaking, if the AR1 model is not
appropriate for the data in question the results of this
work cannot be applied. However, in geophysics many
common physical variables can be approximated by an
AR1 process.

The procedure for the simulations is straightforward,
relying on brute-force computing power. A series of sim-
ulations, each consisting of 1,000 trials, were performed
in which two samples were generated independently
from the same AR1 model. For each trial the λ values
from (6) or (7) were computed and saved. Based on the
distribution of 1,000 λ values quantiles were extracted
corresponding to the following percentiles in the CDF:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92, 0.93, 0.94,
0.95, 0.96, 0.97, 0.98, and 0.99. Separate trials were per-
formed for the following values of the lag-1 autocorrela-
tion: 0.0, 0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.9, and 0.95.
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Although all of the trials were based on large sample
sizes of n1 = n2 = 20,000 in order to reduce sampling
error, this was not crucial. One of the simplifying features
of the K tests is that the sample size dependence is cap-
tured in the λ values via (5)–(7) so that λ critical values
are essentially independent of sample size. This was veri-
fied by running some simulations for sample sizes of
10, 100, 1,000, and 10,000. This is consistent with the
statement by Press et al. (1992) that the approximation in
(9) is quite good even for n as small as 8, noting as well
that (9) and (10) have no sample size dependence. In
addition, the fact that the two samples had equal sizes
does not diminish the wide applicability of the results
since differing sample sizes are also taken into account
by (5).

In order to make the simulation results more readily
available for application a series of polynomials were fit
to the raw quantile values described above. Each CDF for
a given lag-1 value was subdivided into three segments,
with a separate polynomial fit to each segment. The three
segments correspond to CDF ranges of 0.0–0.10, 0.10–
0.50, and 0.50–0.99 for KU. For KS the cut-off of 0.5 is
mostly replaced by 0.6, the choice being dictated by a bet-
ter fit. For the lower two segments the polynomial is lin-
ear while the upper one is cubic. All of the coefficients
and ranges for which they apply are given in Tables S1
and S2 (supporting information), along with an example
for their use. These can easily be used to create computer
code that returns significance levels in the user's pro-
gramming language of choice. Note that in application
the user would apply (1)–(7) as for the traditional
approach, but use probabilities from the polynomials in
lieu of (9) and (10). Throughout this paper, results
referred to as ‘simulation’ (Ks) are based on the values
derived from the polynomial fits.

There is one additional consideration in application
of the polynomial fits, namely how to handle the lag-1
autocorrelations. All of the simulations use the same
lag-1 for both samples as it would not have been practical
to simulate all of the 126 combinations of the 17 levels
used. In most applications one would anticipate that the
autocorrelations for the two samples would not be too
dissimilar. Given lag-1 autocorrelations of r1 and r2 there
would seem to be three reasonable choices, two of which
involve a consensus value r being applied to the
polynomials:

a. r = max (r1, r2)
b. p = average (p1, p2)
c. r = average (r1, r2)

A conservative approach (a) would be to apply the
larger of the two autocorrelations to the polynomial fit.

This would tend to underestimate the level of signifi-
cance. The second approach (b) would be to apply r1 and
r2 separately and average the resulting probabilities. The
third approach (c), the recommended one here, is to
apply the average of the two autocorrelations to the poly-
nomial fit, using Fisher's z transformation (Zar, 2010) for
the averaging:

z1=0:5 ln 1+r1ð Þ= 1−r1ð Þ½ Þ ð13Þ

z2=0:5 ln 1+r2ð Þ= 1−r2ð Þ½ Þ ð14Þ

zavg= z1+z2ð Þ=2 ð15Þ

r= ½ðexp 2 zavg
� �

– 1�= exp 2 zavg
� �

+1
� �� � ð16Þ

As further incentive for use of the results produced
herein a series of ‘look-up tables’ have been produced,
which although less accurate, are easier to apply than the
full set of polynomials. Tables S3–S6 (Supporting Infor-
mation) allow the user to enter the probability arrived at
based on either the traditional or neff approaches, along
with the lag-1 autocorrelation, to yield the probability
one would obtain based on the polynomial fits. An exam-
ple illustrating their use is included in the tables. A draw-
back of this approach is the ability to discriminate
between levels of significance varies by probability and
lag-1 as discussed in Section 5.

4 | PROPERTIES OF THE
SIMULATION RESULTS
AND POLYNOMIAL FITS

4.1 | Polynomial fits

Curves displaying the polynomial fits to the Monte Carlo
simulation results are shown in Figure 4. Both the lower
and upper portions of the CDF exhibit highly nonlinear
behaviour. Although the linear fits in the lowest segment
are far from ideal (see below), it was decided that the
considerable effort needed (i.e., more simulations and
much higher order curve fitting) for a proper rendering is
not justified since this is a region of extreme non-signifi-
cance; the small errors incurred will not change any
inferences. At the high end of the distribution the user
would be advised not to extend results beyond a CDF of
0.99. When a λ exceeds the upper limit (as indicated in
Tables S1 and S2) for the given polynomial the probabil-
ity should be censored to a value of 0.99. Again, in this
region results that are highly significant will not be chan-
ged by this approach.
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The other noteworthy nonlinearity concerns the spac-
ing between the curves representing different levels of
autocorrelation. As autocorrelation increases the curves
are farther apart indicating a greater sensitivity to the
lag-1 value. Taking a big-picture look at the results, con-
sider the fact that the bottom-most curve (lag-1 = 0) rep-
resents critical values used in the traditional approach. It
is clear that for lag-1 values typical of daily surface tem-
perature for example (i.e., ~0.6 to 0.7, the upper orange
and lower green curves) the departure is considerable.

4.2 | Polynomial fits vs. numerical
recipes for lag-1 = 0

As a means of verifying the validity of the Monte Carlo
and curve-fitting approach, simulations were performed
for lag-1 = 0. In theory, these results should be the same
as those from the traditional approach, which in this case
was carried out using Numerical Recipes in FORTRAN
(Press et al., 1992). As seen in Figure 5, for the bulk of
the distributions (0.10–0.99) the results are virtually
indistinguishable. At the lower end (0.0–0.1) the error
incurred by the linear approximation is obvious, although

significance at this end is usually of little practical impor-
tance. However, Stephens (1986) points out that very
small probabilities indicate that the small differences
between the two CDFs are unlikely to be random. Such
results are called superuniform and sometimes indicate
that the data have been tampered with.

4.3 | Raw Monte Carlo vs. fitted

Figure 6 displays the raw Monte Carlo values along with
the polynomial fitted curves for some select values of
autocorrelation. It can be seen that the fitted curves rep-
resent the raw values quite well. In the far right tail, par-
ticularly for higher values of autocorrelation, the fitted
curves smooth out noise expected at the end of the
distribution.

4.4 | Comparisons of distributions of Kt,
Ke, and Ks critical values

The CDFs for the Kt, Ke and Ks critical values are shown
in Figure 7 for four values of autocorrelation. The three
approaches yield essentially identical values when lag-
1 = 0, except for p < .10 where the poorer linear fit is
used for Ks. As autocorrelation increases, the curves for
Ke and Ks move farther to the right, indicating a greater
disparity with the traditional approach which does not
take into account temporal coherence.

Note also how the relative positions involving the three
approaches vary as a function of autocorrelation, especially
for higher autocorrelation. For large probabilities (i.e., more
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significant results) Ks is closer to Ke than Kt. This is consis-
tent with the result from Figure 3 indicating smaller errors
for the Ke than the Kt approach. However, results from
Figure 3 are biased towards the high end of the distribution
since a value of p = .95 was used in determining the FP
and FN rates. In Figure 7 it can be seen that for lower prob-
abilities Ks is closer to Kt than Ke. Thus, the reader should
not be misled by the specific example in Figure 3—in fact
which is better, Kt or Ke is a function of the position in the
CDF and is modulated by the amount of autocorrelation.

As a compliment to Figure 7, Figure 8 shows the
corresponding probability distribution functions (PDFs).
Determination of a PDF is not as straightforward as a
CDF because it first requires the estimation of the local
slope of the CDF followed by application of a somewhat
arbitrary kernel density smoothing operation. Here the
smoothing was chosen to present a reasonable appear-
ance. The step-function at the low end for Ks curves is
due to the use of a linear fit at the low end. As in
Figure 7, Kt and Ke are identical for lag-1 = 0 with Ks

nearly the same except for p < .1. This figure makes it

clear how the three approaches diverge as autocorrela-
tion increases. For the largest autocorrelation, there is
not a lot of overlap between the three distributions.

5 | DISCUSSION
AND CONCLUSIONS

This work has examined the problem of testing for differ-
ences between distributions based on two samples of data
using both the widely used KS test as well as the closely
related but lesser known KU test. While the former is
more sensitive to differences near the middle of the distri-
butions the latter is equally sensitive over the entire dis-
tribution. The question explored here is to what extent
does lack of independence of the values within each sam-
ple, as quantified by the lag-1 autocorrelation, affect the
outcomes of the tests? Three approaches to application of
these tests were examined to address this question: the
traditional approach ignoring the autocorrelation, a
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FIGURE 6 Critical values of the test statistic for KS (solid

curves and left axis) and KU (dashed curves and right axis) as a

function of probability. Each set of four curves, from lower to

higher, correspond to lag-1 autocorrelations of 0.0, 0.3, 0.6, and 0.9.

For each curve, filled circles represent values derived from 1,000

Monte Carlo simulations with sample sizes of 20,000. Fitting was

done using three polynomials, linear for the left (dark green) and

middle (cyan) segments, and cubic for the right segment (red). Note

the vertical offset of the KS and KU curves (for clarity) with the

dashed horizontal line as the zero axis for KU
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FIGURE 7 Cumulative distribution functions (CDFs) of

critical values for three variants of the (a) KS test and (b) KU test:

traditional (black), simulation (cyan) and use of neff (red). For the

simulation and neff sets, from left to right, the four curves

correspond to lag-1 autocorrelations of 0.0, 0.3, 0.6, and 0.9. By

definition, there is only one curve for the traditional approach,

corresponding to lag-1 = 0. Note that for lag-1 = 0, by definition the

neff approach is identical to the traditional approach and the

simulation CDF is obscured for most of the range since it is nearly

identical to the traditional CDF
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modified version using a simple estimate of the effective
sample size, and Monte Carlo simulation.

Some examples using both real as well as synthetic
data demonstrated that substantial errors can arise when
the temporal coherence is ignored. Further diagnosis
showed that the differences between the three approaches
vary depending on the amount of autocorrelation and the
degree to which the two distributions under consideration
differ.

The test based on the simulation results is rec-
ommended for use. To facilitate implementation, coeffi-
cients of polynomials fit to the raw simulation results are
provided (Supporting Information). As long as the data
samples being tested conform to a reasonable extent to
the assumed model used in the simulations the new test
will eliminate the bias found in the traditional and effec-
tive sample size implementations. Also provided are
look-up tables that are easier to use than the full imple-
mentation based on the polynomials.

The results from this work can be used in a tiered
fashion, depending on how much effort a user is willing
to invest. At the lowest tier, the information can provide
guidance as to how seriously results will be affected by
applying the traditional approach. In some cases, the user
may decide that any adverse effects would be minimal.
At the second level the user can, with only a little addi-
tional effort, gain considerable mitigation of the bias by
way of look-up tables. At the highest level, which is the

recommended route, the user can fully implement
the simulation results via the polynomials.

Given the results shown in Figure 3 one might be
tempted to use the Ke approach as a quick-fix alternative
to Kt. However, the efficacy of such a strategy varies and
may be more appropriate when the goal is to identify the
most highly significant differences. As seen in Figure 7,
Ke is closer to Ks than Kt only for high probabilities
(at least ~0.9 to 0.95). In instances in which accuracy for
less significant cases is important, for example when
using a set of significance levels in assessing field signifi-
cance (Wilks, 2016), Kt might be a better choice. In either
circumstance, augmenting with use of the look-up tables
will render more accurate results, but again results
will vary.

If one examines the look-up tables for Kt (Tables S3
and S4) it is possible to achieve a high level of significance
only for low values of lag-1 autocorrelation; much larger Kt

probabilities, beyond the limits of the tables, would be
needed. Conversely, for Ke (Tables S5 and S6), while high
significance is possible, probabilities are censored at .99;
however, the smallest probabilities are rather high in most
cases. To achieve a more realistic range of probabilities in
these two contrasting cases would require extensions into
the more highly nonlinear regions of the relationships. In
summary, while the look-up tables can be useful both diag-
nostically as well for some applications, they are not a pan-
acea. More generally, the full implementation, utilizing the
polynomial fits is recommended.

In closing, there is one further but important consider-
ation for the potential user. Specifically, how appropriate
is the statistical model used in the simulations, namely an
AR1 process, for the data at hand? The AR1 assumption
is appropriate for a broad range of meteorological and cli-
mate processes (Thiebaux and Zwiers, 1984; Zwiers and
von Storch, 1995; von Storch and Zwiers, 2001). On the
other hand some phenomena, particularly those of a
quasi-periodic nature, such as the El Nino Southern Oscil-
lation (ENSO), the stratospheric Quasi-Biennial Oscilla-
tion (QBO), and Madden and Julian Oscillation (MJO), to
name a few, are better characterized as AR2. In other
instances, the Gaussian assumption may not be valid.
Ultimately, a judgement needs to be made as to whether
any perceived violations of the assumptions are out-
weighed by the benefits of accounting for the autocorrela-
tion effect, which, as we have seen, can at times be quite
large. If the simulation model cannot be accepted and
there is considerable autocorrelation then it would seem
that the final course of action would be a set of Monte
Carlo simulations appropriate for the data on hand. Ulti-
mately the user should keep in mind the famous quote by
statistician George Box: ‘all models are wrong, but some
are useful’ (Box, 1976).
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